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WEB APPENDIX 
 

Full description of the method 

In this paper, we developed a statistical model to estimate vaccination coverage within specific 

time periods (here within the years 2008–2011). This differs from the crude estimates described 

in the main text of the manuscript which are an average of campaigns that children experience 

from birth to onset of paralysis. We assume that each child is exposed to a series of vaccination 

campaigns, and these campaigns may have different probabilities of “success,” depending on 

the child’s location, the year, and whether the child is classified as undervaccinated or not. 

 

The data we use to estimate vaccination coverage are from surveillance for acute flaccid 

paralysis (AFP). As cases of nonpolio AFP are caused by a variety of infectious and 

noninfectious causes, we can use data from these cases to represent the vaccination histories of 

children in the general population. The average age of onset of nonpolio AFP is about 3 years, 

and it is the vaccination histories of these younger children that we want to use to estimate 

vaccination coverage of the general population. During AFP case investigation the caregiver of 

the affected child is asked to recall the number of doses of the oral polio vaccine (OPV) that 

the child has received. Vaccination cards are not always available; in the 2011–2012 DHS 36% 

of children surveyed had a vaccination card and there was considerable regional variation (2). 

A previous study in India documented recall error where there was no evidence of bias in 

reporting (3). 

 

For each individual ( ) where N is the total number of children with nonpolio AFP, 

let ( , )i i iz s x  be the observed data, where each individual is exposed to si vaccination 

campaigns from the time they were born to the time of paralysis, and the caregiver of the child 

reports xi doses of OPV received through SIAs. The function ( | )i ip x y  describes the 

probability that the caregiver reports xi doses given the true number iy , which is unknown and 

considered as augmented data. We denote the vectors  ; 1,...,iZ z i N   and 

 ; 1,...,iY y i N  . We assume that reporting error follows a discrete log-normal 

distribution with median yi and coefficient of variation  , which results in a distribution 

similar to the Poisson but with a variance different to the mean, and the variance is smaller than 

the mean if   is small in value (see Web Figure 1 for an example of the distribution of the 

reported doses when the true doses are 5 with a coefficient of variation of 0.1). 

 

i i =1,...,N
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The variability in reported doses is summarized using the coefficient of variation of the 

corresponding continuous log-normal distribution. The distribution is defined as follows: 
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which is defined by the median 
  
ln( y

i
) and standard deviation  , which is then converted to 

the coefficient of variation 
2

1e    . We assume the median of this distribution is equal 

to the true number of doses received, in order to simplify the MCMC parameter estimation. 

This implies an upwards bias in reporting (ratio of median to mean = 
2 /2e ) although for the 

values of 2 that we estimate the extent of this bias is small (the difference between reported 

and true doses is no more than 4 when there are 10 doses are received). We report estimates of 

the coefficient of variation, where small values indicate low variation between observed and 

reported OPV doses.  

 

Four statistical models were used to test hypotheses regarding heterogeneities in vaccination 

coverage. The first model assumes a homogeneous probability of being vaccinated; we assume 

the number of doses each child receives follows a binomial distribution with probability of 

vaccination .  All model parameters are contained within { , }.    A Bayesian 

framework was used, and consequently the posterior probability of the model parameters, given 

the data, is 

 Pr( | , ) ( | , ) ( )Z Y L Z Y g    , 

where ( | , )L Z Y  is the likelihood of observed and augmented data given model parameters 

and 
 
is the prior distribution of the parameters. For ,  we assume an uninformative 

uniform prior on [0,1]. The priors for the standard deviation of the log-normal distribution for 

error reporting are denoted by   and   and were both log-normally distributed with a 

median of 0.1. In an extension of the homogeneous model, in the heterogeneous model 

“undervaccinated” group was considered in addition to the general population. Each child was 

assigned, as augmented data, an indicator variable iw  ( {0,1}iw  ) which indicates 

membership to a group (0 = “general population” and 1 = “undervaccinated”) and coverage is 

given by  
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Consequently, for the heterogeneous model the parameters are defined as { , , }     and 

the augmented data comprise both Y and  ; 1,...,iW w i N  .  

Two additional models (homogenous-temporal and heterogeneous-temporal) were developed 

to further allow variation of vaccination coverage over time. In these models, we assumed a 

step function such that coverage was constant within predefined time periods. The augmented 

data included the true number of doses received within each time period, and the membership 

of a given group (either undervaccinated or not). Here we only considered two time periods but 

the model could be applied to more time periods if appropriate. 

The likelihood for the homogeneous model ( oL ) is given by  

  

 

In the remaining equations the discrete log-normal distribution is simplified to 

dlnorm( , , )i ix y  . The likelihood of the homogeneous temporal (Lot) model is as follows: 

 

, 
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 are the number of SIAs within the vaccine schedule, respectively.  

The likelihood for the heterogeneous model ( eL ) is  
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The likelihood of the heterogeneous temporal model is given the data is as follows: 
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The parameters of the models were estimated using MCMC methods. A Metropolis-Hastings 

algorithm was used to update the augmented data and the standard deviation of error reporting, 

and a Gibbs sampler was used to update the coverage parameters (4). For the homogeneous and 

homogeneous temporal models the augmented data comprised only the true number of doses 

received: Y for the homogeneous model and {
1Y , 

2Y } for the homogeneous temporal model. 

For each iteration of the MCMC, an individual was randomly picked and a new value of yi 

(denoted yi*) was drawn by either increasing (with probability 0.5) or decreasing (with 

probability 0.5) the current value by one. The log-posterior probability was then recalculated 

and if higher than the current one, yi* was accepted, and if lower, yi* was accepted with a 

probability given by the ratio of the new and current posterior probabilities. As the update of yi 

was not always symmetrical (due to upper and lower bound constraints on the possible number 

of doses received), a correction term was included in the acceptance ratio. For example, if yi=0 

and yi*=1, then 

  

Q( y
i
| y

i
*)

Q( y
i
* | y

i
)

=
0.5

1
= 0.5 (where Q  denotes the proposal density distribution), 

and if yi=14, yi*=15 and si=15, then 

  

Q( y
i
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i
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=
1

0.5
= 2 . For the heterogeneous and 

heterogeneous temporal model the augmented data further comprised of the categorisation of 

individuals as being in the general population or undervaccinated group, as denoted by 
 
w

i
 , and 

these augmented data were updated using the Metropolis-Hastings algorithm. As the move for 

 
w

i
is always symmetrical (switching from 0 to 1 or vice versa) no correction term was required. 

The coverage parameters were updated using a Gibbs sampler (4). Taking the posterior density 

of coverage in the homogeneous model as an example, using uniform priors on [0,1] for the 

coverage parameters, the marginal posterior distribution is:  
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New values of coverage are therefore directly sampled from this beta marginal posterior 

distribution. 

 

Traditionally, the deviance information criterion (DIC) is calculated as , where 

 is the expected deviance calculated over the posterior sample, and 
  
p

D
= D-D(q̂ ) , the 

effective number of parameters in the model, is estimated using the difference between the 

expected deviance  and the deviance of a certain parameter set   D(q̂ ) , which can be chosen 

for instance as the mean or the mode of the posterior distribution (5,6). In models with no 

augmented data, the DIC is a robust method to assess competing models. However, DIC is 

known to be problematic for models with augmented data (6). In order to overcome this issue, 

we used a modified criterion defined as follows (and referred to as the rDIC): 

 In a first step, the likelihood of all models with the exception of the homogeneous 

model were rescaled to be directly comparable to that of the homogeneous model. This 

was done by integrating over all augmented data not present in the homogeneous 

model. More specifically, the rescaled likelihoods for the four models were:  

 

Heterogeneous model: 
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Homogeneous temporal: 
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The mean deviance for each model, , was then calculated as -2 times the mean 

rescaled log-likelihood for that model, where the mean is taken over the posterior 

sample of parameters and augmented data.  

 We evaluated the number of parameters for each rescaled model. All rescaled models 

have the same augmented data, but a different, well-defined number of parameters. We 

assumed that the augmented data would have the same contribution to the number of 

parameters in all models, so that, on a relative scale, the empirical number of 

parameters in each model would be 1 for the homogeneous model, 3 for the 

heterogeneous model, 2 for the homogeneous temporal model and 6 for the 

heterogeneous temporal model. 

 Finally, the rDIC was calculated for each model as the sum of the rescaled mean 

deviance and the empirical number of parameters. For a given dataset, the model with 

lowest rDIC was selected, and if the difference in criterion between candidate models 

was less than 5, the most parsimonious model was selected. 

We tested the ability of the rDIC to select the appropriate model on datasets simulated with a 

known model, and found that the rDIC was much more robust than the traditional DIC in the 

context of our method. We emphasize that further research on alternatives to DIC for models 

with augmented data should be carried out.  

In simulations, error reporting was assumed to have a coefficient of variation (on the real scale) 

of 0.1. For each simulated dataset, when a model with an undervaccinated group was selected 

as the best fitting model, the posterior classification of individuals as undervaccinated or 

covered was compared to the simulations to assess the sensitivity and specificity of correctly 

identifying an undervaccinated individual. 

Model sensitivity was defined as the probability that the correct model is selected given that 

the data were simulated under a specific model. Model precision (sometimes known as the 

D
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positive predictive value) is the probability that the correct model is selected given that all 

models are a priori equally possible. 

 

Summary of the simulated data 

 Homogeneous data: Homogeneous coverage where the proportion of children 

vaccinated at each SIA was 10%, 30%, 50%, 70% or 90% (5 scenarios). 

 Heterogeneous data: Coverage in the general population was 70%. An undervaccinated 

group corresponding to 10, 20, 30 or 40% of children, with the proportion covered in 

this undervaccinated group equal to 0.1, 0.2, 0.3 or 0.4 (4x4 = 16 scenarios).  

 Homogeneous-temporal data: Homogeneous coverage of 80% for the first 20 SIAs and 

of 40%, 50%, 60%, 70% or 90% for the next 20 SIAs (5 scenarios). 

 Heterogeneous-temporal data: As the heterogeneous dataset but with an 

undervaccinated group, with coverage 10%, consisting of 0.40 of the population (5 

scenarios).  

The simulated data were used to test different scenarios as described in the manuscript. Many 

other scenarios have also been tested, for example to i) establish the minimum AFP sample size 

required to make satisfactory model inference (>200 cases) and ii) the effect of varying the 

error in the recall of the number of OPV doses by increasing the COV or using a Poisson 

distribution instead of the discretized log-normal. Use of a Poisson distribution (where the 

variance is equal to the mean) results in poor model inference. Increasing the COV when 

assuming a discrete log-normal results in increasingly poor model inference. 
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Web Table 1.  Performance of the Authors’ Method When Applied to AFP Data Simulated 

Under a Homogeneous or Heterogeneous Model of Vaccination Coverage 

 

Vaccination Model and Coverage Parameter  

for Simulated Data 

Best-Fit Model Based on rDIC  

(% of Simulations)1 

Estimated Average 

Coverage (%) 

Campaign 

Coverage 

(%) 

Coverage in 

Undervaccinated 

Group (%) 

Proportion of 

Children in 

Undervaccinated 

Group (%) 

Average  

Coverage  

(%) 

Homo- 

geneous 

Hetero- 

geneous 

Homo- 

geneous–  

Temporal 

Hetero- 

geneous–  

Temporal 

Median 95% CrI 

Simulations to test the homogeneous model 

0.1 - - 0.1 89 3 8 0 0.099 0.089, 0.110 

0.3 - - 0.3 44 42 13 0 0.301 0.284, 0.318 

0.5 - - 0.5 27 57 16 0 0.502 0.483, 0.521 

0.7 - - 0.7 41 44 13 0 0.700 0.680, 0.718 

0.9 - - 0.9 71 16 12 0 0.898 0.882, 0.914 

Simulations to test the heterogeneous model 

0.7 0.1 10 0.64 0 100 0 0 0.636 0.604, 0.669 

0.7 0.2 10 0.65 0 89 11 0 0.650 0.617, 0.684 

0.7 0.3 10 0.66 0 100 0 0 0.660 0.627, 0.694 

0.7 0.4 10 0.67 0 100 0 0 0.668 0.635, 0.701 

0.7 0.1 20 0.58 0 100 0 0 0.579 0.549, 0.611 

0.7 0.2 20 0.6 0 100 0 0 0.601 0.569, 0.633 

0.7 0.3 20 0.62 0 95 5 0 0.622 0.589, 0.654 

0.7 0.4 20 0.64 0 100 0 0 0.639 0.605, 0.671 

0.7 0.1 30 0.52 0 95 5 0 0.523 0.493, 0.552 

0.7 0.2 30 0.55 0 100 0 0 0.554 0.524, 0.585 

0.7 0.3 30 0.58 0 95 5 0 0.582 0.551, 0.614 

0.7 0.4 30 0.61 0 100 0 0 0.610 0.578, 0.643 

0.7 0.1 40 0.46 0 100 0 0 0.463 0.435, 0.490 

0.7 0.2 40 0.5 0 100 0 0 0.502 0.473, 0.532 

0.7 0.3 40 0.54 0 100 0 0 0.542 0.512, 0.573 

0.7 0.4 40 0.58 0 100 0 0 0.582  0.550, 0.614 

 

Abbreviations: AFP, acute flaccid paralysis; CrI, credible interval; rDIC, rescaled deviance information 

criterion. 

 

In the heterogeneous model, a proportion of the children with AFP are assumed to come from an 

undervaccinated group (see Methods for details).  A summary of these results is presented in the text 

(Table 2). 

 

1 Underlined values indicate the model from which the data set were simulated, and consequently 

should provide the best fit to the data. 
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Web Figure 1.  Example of a discrete log-normal distribution used for modeling the reported number of 

doses of oral poliovirus vaccine (OPV). The example is that of a child who received 5 doses of OPV; if 

the coefficient of variation were 0.1, the reported number of doses would vary from 3 to 7, accounting 

for some parents overestimating and some underestimating. More than 95% of the observations will lie 

between 4 and 6 reported doses of OPV. 
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